Copied to
clipboard

G = C42.449D4order 128 = 27

82nd non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.449D4, C42.336C23, C4○D4.9Q8, Q8.4(C2×Q8), D4.4(C2×Q8), D4.Q813C2, Q8.Q813C2, C4⋊C4.43C23, C4⋊C8.44C22, (C2×C8).27C23, C4.31(C22×Q8), C4⋊M4(2)⋊9C2, (C2×C4).278C24, (C22×C4).433D4, C23.660(C2×D4), C4.90(C22⋊Q8), C4.Q8.10C22, C2.D8.81C22, (C2×D4).396C23, (C4×D4).318C22, (C2×Q8).367C23, (C4×Q8).299C22, M4(2)⋊C418C2, D4⋊C4.25C22, (C2×C42).824C22, (C22×C4).997C23, Q8⋊C4.26C22, C23.36D4.2C2, C22.538(C22×D4), C22.55(C22⋊Q8), C2.20(D8⋊C22), (C2×M4(2)).67C22, C42.C2.104C22, C42⋊C2.315C22, C4.88(C2×C4○D4), (C4×C4○D4).25C2, (C2×C4).102(C2×Q8), C2.59(C2×C22⋊Q8), (C2×C4).1215(C2×D4), (C2×C42.C2)⋊32C2, (C2×C4).295(C4○D4), (C2×C4⋊C4).604C22, (C2×C4○D4).309C22, SmallGroup(128,1812)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.449D4
C1C2C4C2×C4C22×C4C2×C4○D4C4×C4○D4 — C42.449D4
C1C2C2×C4 — C42.449D4
C1C22C2×C42 — C42.449D4
C1C2C2C2×C4 — C42.449D4

Generators and relations for C42.449D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=a2b2, ab=ba, cac-1=dad-1=a-1b2, cbc-1=dbd-1=b-1, dcd-1=a2c3 >

Subgroups: 324 in 192 conjugacy classes, 100 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C42.C2, C42.C2, C2×M4(2), C2×C4○D4, C23.36D4, C4⋊M4(2), M4(2)⋊C4, D4.Q8, Q8.Q8, C4×C4○D4, C2×C42.C2, C42.449D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×C22⋊Q8, D8⋊C22, C42.449D4

Smallest permutation representation of C42.449D4
On 64 points
Generators in S64
(1 49 10 63)(2 60 11 54)(3 51 12 57)(4 62 13 56)(5 53 14 59)(6 64 15 50)(7 55 16 61)(8 58 9 52)(17 41 37 28)(18 25 38 46)(19 43 39 30)(20 27 40 48)(21 45 33 32)(22 29 34 42)(23 47 35 26)(24 31 36 44)
(1 26 5 30)(2 31 6 27)(3 28 7 32)(4 25 8 29)(9 42 13 46)(10 47 14 43)(11 44 15 48)(12 41 16 45)(17 55 21 51)(18 52 22 56)(19 49 23 53)(20 54 24 50)(33 57 37 61)(34 62 38 58)(35 59 39 63)(36 64 40 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 13 14 8)(2 7 15 12)(3 11 16 6)(4 5 9 10)(17 36 33 20)(18 19 34 35)(21 40 37 24)(22 23 38 39)(25 26 42 43)(27 32 44 41)(28 48 45 31)(29 30 46 47)(49 58 59 56)(50 55 60 57)(51 64 61 54)(52 53 62 63)

G:=sub<Sym(64)| (1,49,10,63)(2,60,11,54)(3,51,12,57)(4,62,13,56)(5,53,14,59)(6,64,15,50)(7,55,16,61)(8,58,9,52)(17,41,37,28)(18,25,38,46)(19,43,39,30)(20,27,40,48)(21,45,33,32)(22,29,34,42)(23,47,35,26)(24,31,36,44), (1,26,5,30)(2,31,6,27)(3,28,7,32)(4,25,8,29)(9,42,13,46)(10,47,14,43)(11,44,15,48)(12,41,16,45)(17,55,21,51)(18,52,22,56)(19,49,23,53)(20,54,24,50)(33,57,37,61)(34,62,38,58)(35,59,39,63)(36,64,40,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,13,14,8)(2,7,15,12)(3,11,16,6)(4,5,9,10)(17,36,33,20)(18,19,34,35)(21,40,37,24)(22,23,38,39)(25,26,42,43)(27,32,44,41)(28,48,45,31)(29,30,46,47)(49,58,59,56)(50,55,60,57)(51,64,61,54)(52,53,62,63)>;

G:=Group( (1,49,10,63)(2,60,11,54)(3,51,12,57)(4,62,13,56)(5,53,14,59)(6,64,15,50)(7,55,16,61)(8,58,9,52)(17,41,37,28)(18,25,38,46)(19,43,39,30)(20,27,40,48)(21,45,33,32)(22,29,34,42)(23,47,35,26)(24,31,36,44), (1,26,5,30)(2,31,6,27)(3,28,7,32)(4,25,8,29)(9,42,13,46)(10,47,14,43)(11,44,15,48)(12,41,16,45)(17,55,21,51)(18,52,22,56)(19,49,23,53)(20,54,24,50)(33,57,37,61)(34,62,38,58)(35,59,39,63)(36,64,40,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,13,14,8)(2,7,15,12)(3,11,16,6)(4,5,9,10)(17,36,33,20)(18,19,34,35)(21,40,37,24)(22,23,38,39)(25,26,42,43)(27,32,44,41)(28,48,45,31)(29,30,46,47)(49,58,59,56)(50,55,60,57)(51,64,61,54)(52,53,62,63) );

G=PermutationGroup([[(1,49,10,63),(2,60,11,54),(3,51,12,57),(4,62,13,56),(5,53,14,59),(6,64,15,50),(7,55,16,61),(8,58,9,52),(17,41,37,28),(18,25,38,46),(19,43,39,30),(20,27,40,48),(21,45,33,32),(22,29,34,42),(23,47,35,26),(24,31,36,44)], [(1,26,5,30),(2,31,6,27),(3,28,7,32),(4,25,8,29),(9,42,13,46),(10,47,14,43),(11,44,15,48),(12,41,16,45),(17,55,21,51),(18,52,22,56),(19,49,23,53),(20,54,24,50),(33,57,37,61),(34,62,38,58),(35,59,39,63),(36,64,40,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,13,14,8),(2,7,15,12),(3,11,16,6),(4,5,9,10),(17,36,33,20),(18,19,34,35),(21,40,37,24),(22,23,38,39),(25,26,42,43),(27,32,44,41),(28,48,45,31),(29,30,46,47),(49,58,59,56),(50,55,60,57),(51,64,61,54),(52,53,62,63)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I···4P4Q4R4S4T8A8B8C8D
order122222224···44···444448888
size111122442···24···488888888

32 irreducible representations

dim1111111122224
type++++++++++-
imageC1C2C2C2C2C2C2C2D4D4Q8C4○D4D8⋊C22
kernelC42.449D4C23.36D4C4⋊M4(2)M4(2)⋊C4D4.Q8Q8.Q8C4×C4○D4C2×C42.C2C42C22×C4C4○D4C2×C4C2
# reps1212441122444

Matrix representation of C42.449D4 in GL6(𝔽17)

4150000
0130000
0000130
0000013
004000
000400
,
1600000
0160000
000010
000001
0016000
0001600
,
400000
16130000
007700
005000
00001010
0000120
,
1300000
140000
007700
0051000
00001010
0000127

G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,15,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,13,0,0,0,0,0,0,13,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[4,16,0,0,0,0,0,13,0,0,0,0,0,0,7,5,0,0,0,0,7,0,0,0,0,0,0,0,10,12,0,0,0,0,10,0],[13,1,0,0,0,0,0,4,0,0,0,0,0,0,7,5,0,0,0,0,7,10,0,0,0,0,0,0,10,12,0,0,0,0,10,7] >;

C42.449D4 in GAP, Magma, Sage, TeX

C_4^2._{449}D_4
% in TeX

G:=Group("C4^2.449D4");
// GroupNames label

G:=SmallGroup(128,1812);
// by ID

G=gap.SmallGroup(128,1812);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,568,758,2019,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*c^3>;
// generators/relations

׿
×
𝔽